Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 CSE 05/01/2022

CONTINUOUS INTERNAL EVALUATION- 2

Dept:CSE	Sem / Div:3/ A & B	Sub:Data Structures and its Applications	S Code:18CS32
Date:11/01/2022	Time: 3:00-4:30 pm	Max Marks: 50	Elective:N
Note: Answer any	y 2 full questions, cho	osing one full question from each part.	

Q N	Questions	Marks	RBT	COs
	PART A			
1 a	Give the node structure for the following operations on a singly linked list of integers.	9	L3	CO3,4
	(i) Create a list which contains 3 nodes with data 100,150,200. Insert a node with data 400 at the end of the list.			
	(ii) Insert a node with data 500 between the nodes having data values 100 and 150.		2	
	(iii) Display the singly linked list. Write the C function for (i) and (iii)			
b	Write an algorithm to add 2 polynomials using circular singly linked list (CSLL). And also represent the given polynomial using CSLL.	8	L3	CO3,4
	$P(x, y, z) = 6x^{2}y^{2}z - 4yz^{5} - 4yz^{5} + 3x^{3}yz + 2xy^{5}z - 2xyz^{3}$			
С	Write the C function for the following: a) Concatenation of 2 singly linked lists b) Reverse a single inked list	8	L2	CO3,4
	OR		<u> </u>	
2 a	What are the advantages of doubly linked list over singly linked list? Write a C function to perform the following operations on double linked list.	9	L3	CO3,4
	(i) Inserting a node at the beginning. (ii) Deleting a node at the end.			
b	How can a stack be represented using a singly linked list? Write C functions for linked implementation of push and pop.	8	L3	CO3,4
С	Give the node structure of sparse matrix (header and element) and represent the following sparse matrix using header circular linked list.	8	L2	CO3,4
	$A = \begin{bmatrix} 8 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 \end{bmatrix}.$			
	PART B	N,		
	Draw an expression tree for the following arithmetic expression	9	L3	CO3,4
(A+B*C) +((D*E+F)*G) Traverse the above generated tree using inorder, preorder and postorder.				
b	Explain the following trees with example	8	L2	CO3,4
S	i) Binary tree	-}		

Prepared by: Rooping

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

CSE

05/01/2022

CONTINUOUS INTERNAL EVALUATION- 2

ii) Full binary tree iii) Complete binary tree iv) Skewed binary tree			
c Explain Array representation and linked representation of binary tree for the following example. Which representation is more suitable and why?	8	L3	CO3,4
B			
D E F			-
OR			
a Construct binary tree form following inorder and preorder sequence. Write C function for inorder, preorder and postorder traversal methods.	9	L3	CO3,4
inorder: 5,10,12,11,18,22,26,30,31,35,44,50,66,70,80			
preorder:30,11,10,5,12,22,18,26,50,35,31,44,70,66,80			
b Represent the following tree using i) Left Child- Right Sibling Representation ii) Degree-Two tree (Left child-Right Child Representation)		L3	CO3,4
B C D			
E F G H I J			
K L M	,		
c Explain threaded binary tree with its data structures. Write threaded binary tree and its memory representation for the following binary	8	L3	CO3,4
tree.			
Q			
B Q			
© © ©			
m C			

Roope G K/Nithin Kurup U C

repared by:

HOD